Bristol Interaction and Graphics

Recent Seminars

Integrated Design Environments for Creating Interactive Media Content

This talk introduces Integrated Development Environments (IDEs) for creating interactive media content. The IDEs aim to improve programming experience by using graphical representations such as photos and videos. Moreover, recent work is designed to help not only programmers but also designers (thus named Integrated Design Environment), liberating the programmer's way of content authoring to more people.


Interacting with Personal Fabrication Machines

Even though considered a rapid prototyping tool, 3D printers are very slow. Many objects require several hours of printing time or even have to print overnight. One could argue that the way 3D printers are currently operated is very similar to the batch processing of punched cards in the early days of computing: all input parameters are pre-defined in the 3D modeling stage, the 3D printer then simply executes the instructions without human intervention.

If we look at the history of computing, increasingly faster processing times allowed us to move away from batch processing and enabled completely new interaction paradigms: while slow batch processing required carefully thinking ahead, command line input allowed for tighter feedback loops, and direct manipulation finally enabled even novice users to quickly iterate towards a solution.   

In this talk, I argue that by speeding up personal fabrication technology, we will be able to interactively shape physical matter in real-time in the same way as today’s fast computers allow us to interactively manipulate information. As a first step towards this goal, I will present my CHI/UIST publications on faster fabrication (e.g. WirePrint [UIST’14], Platener [CHI’15]) and new interaction paradigms for interactive manipulation of matter (e.g. constructable [UIST’12], LaserOrigami [CHI’13]).

All welcome, no registration required. 

Organised by the Bristol Interactions and Graphics group (


An overview on Sentiment Analysis: from text to videos

The emergence of online social networks has made available an enormous amount of data containing users’ opinions about the most varied subjects (e.g., products or services, political parties, etc), yet in varied forms, ranging from simple text snippets as in Twitter to images and even motion (e.g., YouTube). In this scenario, Opinion mining/Sentiment Analysis emerges as a means to determine the users’ opinions polarity, classifying them as positive or negative. As an outcome, it is possible to determine the average approval/rejection of an entity (a product, a service, a company or even of elections candidates) based on the opinion of several users. Note that this analysis can also focus on users’ moods, feelings or emotions, and yet on how people influence each other in virtual online communities.

Sentiment Analysis (SA) has been traditionally based on text. However, in recent years, this area has expanded to multimodal SA (text, images and/or videos), still a very challenging issue. In this talk I will introduce basic concepts and applications of textual SA (my research area), briefly discussing some works on multimodal SA.


Design for Peripheral Interaction

Interactive devices such as mobile phones play an important, but often needlessly obtrusive role in everyday life. This can be prevented when people could interact with these devices without focused attention. This talk will address ‘peripheral interaction design’: interaction design which can effortlessly be used as part of people’s everyday routines without inappropriately attracting attention. I will present a number of peripheral interaction design examples which were developed at the Industrial Design department at the Eindhoven University of Technology in the Netherlands.


Displays in our world are but a canvas to our imagination

With apologies to Henry Thoreau, the world is seeing new uses of displays all around us. These displays are on and around our body, fixed and mobile, bleeding into the very fabric of our day to day lives. Displays come in many forms such as smart watches, head-mounted displays or tablets and fixed, mobile, ambient and public displays. However, we know more about the displays connected to our devices than they know about us. Displays and the devices they are connected to are largely ignorant of the context in which they sit including knowing physiological, environmental and computational state. They don’t know about the physiological differences between people, the environments they are being used in, if they are being used by one or more people.

In this talk we review a number of aspects of displays in terms of how we can model, measure, predict and adapt how people can use displays in a myriad of settings. With modeling we seek to represent the physiological differences between people and use the models to adapt and personalize designs, user interfaces. With measurement and prediction we seek to employ various computer vision and depth sensing techniques to better understand how displays are used. And with adaptation we aim to explore subtle techniques and means to support diverging input and output fidelities of display devices. The talk draws on a number of studies from recent UMAP, IUI, AVI and CHI papers.

Our ubicomp user interface is complex and constantly changing, and affords us an ever changing computational and contextual edifice. As part of this, the display elements need to be better understood as an adaptive display ecosystem blending with our world rather than simply pixels.